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[n] := {1, 2, . . . , n},
Sn := symmetric group on [n],

I0 := I ∪ {0} for I a finite set of positive integers,

m := max I0.

Permutation π = π1 . . . πn ∈ Sn has descent set

Desπ = {i | πi > πi+1} ⊆ [n − 1].

Given I and n > m, define

D(I ; n) = {π ∈ Sn | Desπ = I} and d(I ; n) = #D(I ; n).

Ex. D({1, 2}; 5) = {32145, 42135, 52134, 43125, 53124, 54123}.
Theorem (MacMahon, 1916)

We have d(I ; n) is a polynomial in n, called the descent polynomial.

Proof. Let I = {i < j < . . . }. Use inclusion-exclusion on π ∈ Sn

of the form π = π1 < · · · < πi πi+1 < · · · < πj · · · .
Corollary (ADL-PH-EI-BES, 2016)

If I 6= ∅ and I− = I − {m} then d(I ; n) =
(n
m

)
d(I−;m)− d(I−; n).

So deg d(I ; n) = m.



[`, n] := [`, `+ 1, . . . , n].

Permutation π = π1 . . . πn ∈ Sn has peak set

Peakπ = {i | πi−1 < πi > πi+1} ⊆ [2, n − 1].

Note that if Peakπ = I then I can not contain two consecutive
integers and call such I admissible. If n > m then define

P(I ; n) = {π ∈ Sn | Peakπ = I}.

Ex. P({2}; 4) = {1324, 1423, 1432, 2314, 2413, 2431, 3412, 3421}.

Theorem (SB-KB-BES, 2013)

If I 6= ∅ is admissible then #P(I ; n) = p(I ; n)2n−#I−1 where p(I ; n)
is a poynomial in n of degree m − 1 called the peak polynomial.

Proof. Use inclusion-exclusion on π ∈ Sn such that

Peak(π1 . . . πm−1) = I − {m} and Peak(πm . . . πn) = ∅

and then induct.



The peak polynomial is not always real rooted. But it does have
some interesting integral roots.

Theorem (SB-MF-AT, 2016)

Let I = {i1 < · · · < is}.
(i) If ir+1 − ir is odd for some r then

p(I ; 0) = p(I ; 1) = · · · = p(I ; ir ) = 0.

(ii) If i ∈ I then
p(I ; i) = 0.



In some ways the descent polynomial behaves similarly.

Theorem (ADL-PH-EI-BES, 2016)

If i ∈ I then
d(I ; i) = 0.

Proof.

d(I ; n) =

(
n

m

)
d(I−;m)− d(I−; n)

where I− = I − {m}. If i < m then, using induction,

d(I ; i) =

(
i

m

)
d(I−;m)− d(I−; i) = 0 · d(I−;m)− 0 = 0.

If i = m then

d(I ;m) =

(
m

m

)
d(I−;m)− d(I−;m) = 0

as desired.



Ex. Let I = {1, 2}. Then

D(I ; n) = {π = π1 > π2 > π3 < π4 < · · · < πn}.

So π3 = 1. And picking any two elements of [2, n] for π1, π2
determines π. Thus

d(I ; n) =

(
n − 1

2

)
=

n2 − 3n + 2

2

has negative, nonintegral coefficients.
The next peak polynomial result was conjectured by SB-KB-BES.

Theorem (ADL-PH-EI-MO, 2016)

The coefficients in the expansion

p(I ; n) =
∑
k≥0

ak(I )

(
n −m

k

)
are nonnegative integers.

Proof. Use a new recursion for p(I ; n) based on where n + 1 can
be placed in passing from Sn to Sn+1.



For descent polynomials, these coefficients have a combinatorial
interpretation.

Theorem (ADL-PH-EI-BES, 2016)

Define bk(I ) as the coefficients in the expansion

d(I ; n) =
∑
k≥0

bk(I )

(
n −m

k

)
.

Then bk(I ) is the number of π ∈ D(I ; n) with

{π1 . . . , πm} ∩ [m + 1, n] = [m + 1,m + k]. (1)

Proof. Partition D(I ; n) into subsets Dk(I ; n) which contain those
permutations in D(I ; n) such that |{π1 . . . , πm} ∩ [m + 1, n]| = k.
Then show

|Dk(I ; n)| = bk(I )

(
n −m

k

)
where bk(I ) is given by equation (1).



More on roots (including complex).

Conjecture (SB-MF-AT for p, ADL-PH-EI-BES for d , 2016)

If d(I ; z) = 0, or if I is admissible and p(I ; z) = 0 then

|z | ≤ m and <(z) ≥ −3.

For d(I ; z) this conjecture has been checked for all I with m ≤ 12.

Ex. Roots of d(I ; z) for I = {4, 6}.



More on coefficients.

Problem
Find a combinatorial interpretation of the ak(I ) in

p(I ; n) =
∑
k≥0

ak(I )

(
n −m

k

)
.

Sequence a0, a1, . . . is log concave if, for all k, ak−1ak+1 ≤ a2k .

Conjecture (ADL-PH-EI-BES, 2016)

The sequence b0(I ), b1(I ), . . . is log concave where the bk(I ) are
defined by

d(I ; n) =
∑
k≥0

bk(I )

(
n −m

k

)
.

Note that the stronger condition of the generating function for
b0(I ), b1(I ), . . . being real rooted does not always hold.

Proposition (ADL-PH-EI-BES, 2016)

If I = [`,m] then b0(I ), b1(I ), . . . is log concave.



Other Coxeter groups.
The symmetric group is the Coxeter group of type A. There are
analogous results for types B and D which have been demonstrated
by FCV-ADL-RO-JP-RZ (2013) and ADL-PH-EI-DPL (2016) for
p(I ; n), and by ADL-PH-EI-BES (2016) for d(I ; n). For example,
we view β = β1 . . . βn ∈ Bn as a signed permutation and extend β
to β = β0β1 . . . βn where β0 = 0. Translating the usual definition
of descent set for a Coxeter system into this setting gives

Desβ = {i ≥ 0 | βi > βi+1}.
Given a finite set I of nonnegative integers, define

DB(I ; n) = {β ∈ Bn | Desβ = I} and dB(I ; n) = #DB(I ; n).

Using Inclusion-Exclusion, one obtains the following.

Proposition (ADL-PH-EI-BES, 2016)

If I 6= ∅ and I− = I − {m} then

dB(I ; n) =

(
n

m

)
2n−mdB(I−;m)− dB(I−; n).
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